小学五年级全科目课件教案习题汇总语文数学英语 数+偶数=奇数,还不能得到值钱的东西。 5月12日 星期五 算工钱 中午爸爸下班回来,哼着小调,兴高采烈地跨进家门我迎上去问道:“爸爸,今天有什么事这么高兴?”爸爸说:“这个月我涨工资了。”我问道:“那你现在一个月拿多少工资?”爸爸想了想,微微一笑说:“我比你妈的工资高,我俩的月工资加起来是2800元,月工资差是100元,你说我一个月拿多少工资?” 听了爸爸的话,我动手在纸上画出了线段图帮助我理解: 通过观察和思考,我很快算出了答案,并且告诉爸爸。首先把妈妈的工资看作和爸爸同样多,那么爸爸、妈妈的月工资一共是(2800+100)=2900元,再把月工资和平均分成2份,求出的1份就是爸爸的月工资。列式是:(2800+100)÷2=1450元。 爸爸听了,满意地直点头。这时,正在做饭的妈妈对我说:“你还有其它方法吗?”“还有其它方法?”我惊奇地说。我报着好奇的心情静下心来再次观察、思考,我发现此题关键是找出以谁作标准的问题,标准不同,方法也就不同。于是,我有了第二种方法:就是以妈妈的工资作标准,假设爸爸和妈妈的工资同样多,那么俩人的月工资和就是(2800-100)=2700元,再把月工资和平均分成2份,求出的1份就是妈妈的月工资最后加上爸爸比妈妈多的100元,就是爸爸的月工资。列式为(2800-100)÷2+100=1450元。 听完了我第二种方法的介绍,爸爸、妈妈笑了…… 3月24日 星期三 晴 电扇厂计划20天生产电扇1600台,生产5天后,由于改进了技术,工作效率提高25%,完成任务还需要多少天? 分析:这题可以通过转化,用正比例方法解,设原来效率是“1”,则实际效率是原来的(1+25%)=5/4,那么实际效率与原来效率的比是 5/4∶1=5∶4,因为效率与时间成反比例,因此实际与计划所需时间的比是4∶5,如果设实际还需要X天,原来的天数是20-5=15(天),于是,可用正比例方法解: 解,设完成计划需X天。 4∶5=X∶(20-5) 5X=4×15 X=12 答:完成计划还需12天。 3月27日 星期六 晴 今天,显得非常地无聊,就随手拿出一张《数学报》,突然一个非常的特别的题目把我吸引了。 [题目]有一张长方形铁皮,剪下图中的阴影部分,正好能做成一个圆柱体这个圆柱体的底面半径为2分米,那么原来 长方形铁皮的面积是多少平方分米? [分析与解题]仔细观察右图,可以发现阴影长方形的宽不可能是这个圆柱体的底面周长,那么,圆柱体的底面周长是阴影长方形的长,另外,我们还可以发现长方形铁皮的宽,即圆柱体的高是圆柱底面直径的2倍,圆柱的底面直径+底面周长=长方形铁皮的长。因此,长方形铁皮的长是2×2+2×3.14×2= 16.56(分米)宽是2×2×2=8(分米)原来长方形铁皮面积是16.56×8=132.48(平方分米)。 3月27日 星期六 晴 要结合实际想问题 想一想,他的错误在哪里? [题目]某大厅有两根圆柱形木柱,木柱的底面直径是0.6米,柱高是6米,如果要在它们的表面积重新涂上一层油漆,油漆的部份面积有多少平方米? 小强看完这题之后,觉得这题很简单,很快列出算式并求出油漆的部份是多少平方米。 3.14×(0.6÷2)×(0.6÷2)+3.14×0.6×6×2=23.7384(平方米)。仔细分析题意,我们可以发现,小强的这样想法是完全错误的,错误的原因就是没有结合实际想问题。木柱虽然是圆柱形,但就实际问题来说油漆的部分不包括上底面和下底面。因此要求油漆部分的面积就是求这两根圆柱形的木柱的侧面积,列式应为:3.14×0.6×6×2=22.608(平方米),答:油漆部份的面积有22.608平方米。 6月9日 星期一 晴转阴 下午放学时,班主任老师给我们布置了一道家庭作业,要求大家想办法测算一次性筷子的体积,并用数学日记的形式将测算过程记录下来。这道家庭作业,表面上是一次数学实践活动,实际可能寓意更深,因为一次性筷子的使用与环保有关。 一回到家,我就静静地坐在书桌前思考这个问题。一次性筷子的形状是一个不规则的立体图形,怎样才能测算出它的体积呢?我思来想去,一会儿抓耳挠腮,一会儿摇摇头……,终于,有了一点眉目。我可以将一次性筷子放入装满水的容器中,这样容器中的水就会溢出来,溢出水的多少不就是筷子的体积吗?可是筷子比水轻,会浮在水面上,又该怎么办呢?可不可以用石头或胶布之类的东西将筷子固定住呢?我想应该是可以的,但这些办法测定起来又都太麻烦了,要是有更简便的方法该多好啊!经过冥思苦想,我终于自豪的笑了。 6月10日 星期二 晴 今天中午,我去餐馆买了一份盒饭,并特意要了几双一次性筷子准备做实验。 一回到家,想到可以做实验了,心情真有点激动,但又夹杂着几丝恐慌,我可不想让第一个方案刚一出炉就遭到淘汰。为了验证实验方案是否正确,我专门测量了筷子的长度(20厘米)、厚度(0.35厘米)和两端的宽度(分别为1.6厘米、0.8厘米)。由于一次性筷子近似于梯形体,我便利用梯形体的体积计算公式来计算筷子的体积,由计算结果可知,一次性筷子体积大约为8.4立方厘米。如果实验测得的结果和我所计算的结果近似的话,那么就说明我的实验是成功的,否则,我就得另想办法。刚准备动手实验,一看实验用具还不够,所以只好等到明天了。 6月11日 星期三 晴 盼望的时刻总算到了,一放学,一路小跑地回到家里,放下书包后,我就迫不及待地拿起爸爸从单位借来的烧杯。接满水后,小心翼翼地将烧杯放在盆子里,确保烧杯中的水不漏撒。接着,我用小刀在筷子上刻了一道痕迹,把筷子分成了两部分,这一道痕迹就是筷子两部分的分界线,我准备分两次来测量筷子的体积。 实验开始了,我紧张极了,心嘣嘣地跳,我拿筷子的手也不时发抖了,但我尽量克制住这种激动的情绪。我将筷子缓缓插入烧杯里,尽量不让筷子晃动,否则溢出来的水就太多了,测定结果就会不准确。当第一次将筷子的一部分插入烧杯中后,看到烧杯中的一些水溢到了盆里。烧杯再装满水后,又将筷子的另一部分插入其中。最后,我将两次溢到盆里的水倒入另一有刻度的烧杯中,这样就得到了筷子的体积。 结果,我失败了。实验测得的筷子体积只有3立方厘米,跟我计算的筷子体积相差甚远。起初,我还有些不相信,经过反复思考,我终于明白了失败的原因。原来是因为烧杯的口径太大了,即使烧杯没有装满水,人的视觉也会看成是装满的,加之筷子的体积又太小,且烧杯的刻度又过大,导致了实验结果的偏差。因此,我得改进改进实验方法才行。相信我会成功的,不是说失败是成功之母吗? 6月12日 星期四 晴 自从第一次实验失败后,我就捉摸改进的方法,可是就是想不到一种简单可行的办法。这天中午,爸爸,妈妈有事没有做饭,于是我们决定到外面吃饭。 到餐馆点了菜后,妈妈为了不让我等烦,特地点了一杯果汁。果汁一上来,我就大口吸了几下,妈妈害怕我将果汁喝完,没有胃口吃饭,便叫我少喝果汁。菜还没有上,我觉得自己无所事事,便想到了吹泡泡,于是我就把果汁瓶里的吸管拿起来,对准水面吹了几口气,水面就起了几个泡泡,瞬间,我想到刚才我拿杯子里的吸管时,水面下降了一点,我突然有了办法,快乐极了,食欲大增,今天吃了好几碗米饭,还嫌不够。 6月13日 星期五 晴 今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。 首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。当我得到这个结果时,我兴奋地叫了,此时 的我是多么自豪、多么骄傲啊! 接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气。 今天中午,我正在做数学暑假作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。 我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊! 正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。 最后,我得到了结果,为374立方厘米。我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米) 后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。 解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。 今天我又遇到一道数学难题,费了好大的劲才解出来。题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等。两棵树上原来各有几只小鸟?
用户登录
还没有账号?立即注册
用户注册
投稿取消
文章分类: |
|
还能输入300字
上传中....